JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA–533003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

III Year – II SEMESTER		L	Т	Р	С
		3	0	0	3
	POWER SYSTEM ANALYSIS				

Preamble:

The course is designed to give students the required knowledge for the design and analysis of power flow studies and faults in electrical power systems. Calculation of power flow in a power system network using various techniques, formation of Z_{bus} and its importance are covered in this course. It also deals with short circuit analysis and analysis of power system for steady state and transient stability.

Course Objectives:

- To develop the impedance diagram (p.u) and formation of Y_{bus}
- To learn the different load flow methods.
- To learn the Z_{bus} building algorithm.
- To learn short circuit calculation for symmetrical faults
- To learn the effect of unsymmetrical faults and their effects.
- To learn the stability of power systems and method to improve stability.

UNIT - I

Circuit Topology & Per Unit Representation

Graph theory definition – Formation of element node incidence and bus incidence matrices – Primitive network representation – Formation of Y_{bus} matrix by singular transformation and direct inspection methods – Per Unit Quantities–Single line diagram – Impedance diagram of a power system – Numerical Problems.

UNIT - II

Power Flow Studies

Necessity of power flow studies – Derivation of static power flow equations – Power flow solution using Gauss-Seidel Method – Newton Raphson Method (Rectangular and polar coordinates form) – Decoupled and Fast Decoupled methods – Algorithmic approach – Numerical Problems on 3–bus system only.

UNIT - III

Z-Bus Algorithm & Symmetrical Fault Analysis

Formation of Z_{bus} : Algorithm for the Modification of Z_{bus} Matrix (without mutual impedance) – Numerical Problems.

Symmetrical Fault Analysis:

Reactance's of Synchronous Machine – Three Phase Short Circuit Currents - Short circuit MVA calculations for Power Systems – Numerical Problems.

UNIT - IV

Symmetrical Components

Definition of symmetrical components – symmetrical components of unbalanced three phase systems – Power in symmetrical components – Sequence impedances and Sequence networks: Synchronous generator – Transmission line and transformers – Numerical Problems.

Unsymmetrical Fault analysis

Various types of faults: LG-LL-LLG and LLL on unloaded alternator-Numerical problems.

UNIT - V

Power System Stability Analysis

Elementary concepts of Steady state – Dynamic and Transient Stabilities – Swing equation – Steady state stability – Equal area criterion of stability – Applications of Equal area criterion – Factors affecting transient stability – Methods to improve steady state and transient stability – Numerical problems.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA-533003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Outcomes:

After the completion of the course the student should be able to:

- Draw impedance diagram for a power system network and calculate per unit quantities.
- Apply the load flow solution to a power system using different methods.
- Form Z_{bus} for a power system networks and analyse the effect of symmetrical faults.
- Find the sequence components for power system Components and analyse its effects of unsymmetrical faults.
- Analyse the stability concepts of a power system.

Text Books:

- 1. Power System Analysis by Grainger and Stevenson Tata McGraw Hill.2003
- 2. Modern Power system Analysis by I.J.Nagrath & D.P.Kothari: Tata McGraw–Hill Publishing Company 3rd edition 2007.

Reference Books:

- 1. Power System Analysis by A.R.Bergen Prentice Hall 2nd edition 2009.
- 2. Power System Analysis by HadiSaadat Tata McGraw–Hill 3rd edition 2010.
- 3. Power System Analysis by B.R.Gupta A H Wheeler Publishing Company Limited 1998.
- 4. Power System Analysis and Design by J.Duncan Glover M.S.Sarma T.J.Overbye Cengage Learning publications 5th edition 2011.